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ABSTRACT 

We show, by a direct examination of Feynman qr a@ , 

that lowest order Sudakov effects factorize from Glauber 

region gluons in quark-hadron scattering. We then find that 

the Sudakov double logarithms cancel. The result is 

consistent with order-by-order factorization in perturbation 

theory for the Drell-Yan process. 
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I. INTRODUCTION 

Pertubative factorization theorems relate QCD pertubation theory cross 

sections to the parton model. For short-distance processes such as production 

of massive p-pairs and jets in hadron-hadron scattering, they make it possible 

to calculate scale bre&ing and, in some cases, relative normalizations. On the 

other hand, convincing all-order arguments for factorization in hadron&idron 

collisions are still lacking. The main problem is to treat the effects of soft 

gluons. The work of Doria, Frenkel and Taylor', and of Bodwin Brodsky and 

LePage2 showed how careful one must be in identifying important regions involv- 

ing soft gluons. In particular, Bodwin et al. pointed out difficulties in 

3 previous factorization arguments . They discussed "Glauber" exchanges: gluons 

of predominantly transverse momentum, which attach to spectator quarks of an 

incoming hadron. Mueller 4 then observed that the color exchange associated 

with Glauber gluons induces a further non-cancellation of double logarithmic 

(Sudakov) bremsstrahlung. He argued thatthis effect might lead in turn to a 

buildup of Sudakov suppression for the non-factorizing effects of Glauber ex- 

change gluons. This would restore parton model normalization asymptotically 

in hadron-hadron processes like Drell-Yan. HOWeVer, scale breaking in Drell- 

Yan might be very different from scale breaking in deeply tnelastic scattering, 

at least at 2 present energies . Also, factorization would not hold order- 

by-order in perturbation theory but would require infinite resunnnations. This 

in itself is not such a bad thing, but might make the proof more difficult to 

extend past the leading logarithm approximation (I&. 

It is our purpose in this paper to show that the treatment of a larger set 

of graphs than in ref.4 can lead to order-by-order factorization of Sudakov 

bremsstrahlung from Glauber exchanges. We recover order-by-order "weak" factori- 

zation5 , and argue that Sudakov-like scale breaking need not be present in 
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complete Drell-Yan and related cross sections. They are, however, present in 

the restricted set of diagrams analyzed by Muell,er' and Date6, We should men- 

tion that weak factorization in the sense of ref. 5 has been shown to imply 

"strong" factorization, in which deeply inelastic scattering sets the normali- 

zation of the Drell-Yan process. 7 Also, strong factorization has been verified 

at two loops for the contributions of gluons whose momenta are not vanishingly 

small. 8 

We shall work only to the lowest relevant order and in the LLA, but we 

believe the structure of our calculations indicate that they will apply quite 

generally. We always work in the Feynman gauge. 

Section 2 describes the model in which we work. In section 3 we review 

the observations of Mueller, and outline our analysis. Sections 4 and 5 des- 

cribe representative details of the calculation, in the former case for one 

loop corrections, and in the latter case for two. In section 6 we summarize 

our results and give a few brief arguments on why we expect them to generalize. 



II.:THE MODEL 

In this section we describe the various approximations and assumptions 

that we use in our model calculation. We consider the basic graphs shown in 

Fig. 2.1. Here h is the incoming hadron moving along the edirection, which 

couples to the quarks through a vertex v. We assume W falls off rapidly to 

zero when the transverse momentum flowing through the vertex is large compared 

to a fixed mass, say the inverse transverse size of the hadron. Otherwise our 

analysis is +ndependent of the detailed form of the wave function. q is an 

external quark moving along the +z direction. We work in the centre of mass 

frame of the external quark and the external hadron, and in the Feynman gauge. 

In Feynman gauge, the diagrams shown in Fig. 2.1(a) and 2.1(b) are both 

of order .&nLs. The Sudakov double logarithmic contribution comes from the over- 

lap of the regions where the gluons k,k' are either parallel to p or parallel to 

.P ' , and the region where k,k' are soft. For definiteness, we consider the over- 

lap'region where k is collinear to p and soft (i.e. k.p << k.p' << p.p'). 

Although the individual diagrams have double logarithmic contributions from 

this region, these contributions cancel when we add the two graphs in Fig. 2.1, 

and we get only a single factorizing log. In this paper we study the effect of 

adding to the diagram of Fig. 2.1 "exchange" gluons, which are always attached to 

the spectator quark line at one end and to either the Sudakov gluon or the active 

quark lines (Fig. 2.2) at the other. If we label the momenta of the exchange gluons 

by ii, then these graphs receive leading contribution from three regions in the 

phase space. 

Collinear to p': 1 < ,&- < c;;e+ R, _I ; "I% 1; 
A 

Glauber: -l.i- z 1;&+ % 2;9. 'li 1; 
VT VG L 

Infrared:‘ 1iy 2 +, 



5 

where the scale is set by the cut off on the transverse momentum. In our 

analysis, we stay away from the IR region, since we expect the contribution 

from this region to cancel when we sum over real and virtual graphs. We focus 

our attention on the collinear and the Glauber region. 

A consequence of the transverse momentum cut off at W is that both the 

collinear and Glauber regions for exchange gluons give finite modifications of 

the 9n2s term. Were W a renormalizable vertex, these regions could have led 

to additional logarithms in their own right, 

Below, we refer to the line k' as the Sudakov gluon, and to the lines 

with momentum 4,: as the exchange gluons. We assume that the invariant mass of 

the p pair, Q, is a finite fraction of 6. 
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III. REVIEW AmOUTLINE OF CALCULATIONS 

Here we review the comments of ref.4 on the interplay of exchange and 

Sudakov gluons. We then go on to describe our calculations and to give some 

motivation for them. 

We note first that any q< scattering amplitude may be written as 

A = A1 'ab6cd 
ii 

abed + A8TabTcd ' (3.1) 

with T i the generators in the fermion representation. In QCD, this decomposes 

any such amplitude into t-channel singlet and octet representations, as in 

Fig 3.1. In the discussion below, &will represent a generic cut hard process, 

assumed to be dominated by W momenta, The simplest example would be the Born 

term for p-pair production. 

The lowest order Sudakov correction to &will be labelled Sabcd, and is 

shown in Fig. 3.2, where k!is a Sudakov gluon. Becaus~e &is W, the LLA for 2 

is simple, and is given by 

S = A8 
C)J2 

abed 
-y (5h2Q2)TibTfd 9 (372) 
87 

The octet part of A gives rise to non-cancelling Sudakov logs from the correc- 

tion. These logarithms do not contribute to the cross section at this order, 

if we average over the colors of the incoming pair; 

S aacc = o(&*g2), (3,3) 

Thus at lowest order, Sudakov effects cancel. It is only by mixing them with 

exchange gluons that non-factoring logs. are found. 

Still following ref. 4, consider the set of graphs rl in Fig. 3.3 for quark- 

hadron scattering. We go to the Glauber region in the momenta 1:. Then a short 
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calculation shows that in LLA this region gives 

C 
rl = cAg(~- -5% g2Qn2Q), 

8v2 

where c is a positive constant. It is not difficult to show that as more 

Sudakov gluons are added to A the result exponentiates, giving 

CA 
cA82 

8 exp(- - 
alI2 

fin2Q2) * (3.4) 

This is the Sudakov suppression of the Glauber region . 

To motivate the calculation described below, we observe that the graphs 

of Fig. 3.3 do not exhaust the LLA at this order for graphs with a single Sudakov 

glum and two exchange gluons attached to spectator quarks. Other graphs, of 

the form of Fig. 3,4, also contribute in this region. Gluons entering 2 may 

attach to the bremstrahlung glum itself. We call the sum of these graphs r2. 

In addition to the Glauber region in the II:, the collinear region, described in 

section 2, also contributes in the LLA. (We remind the reader that with limited 

transverse momenta the collinear region gives a finite, not logarithmic, 

coefficient to the Sudakov double log,) We should therefore do a calculation 

which includes collinear, as well as the Glauber regions. This requirement is 

characteristic of the Feynman gauge, 

The result of our calculation is that,in LLA, 

rl + r2 = $ (Saacc) (Paa) , (3.5) 

where Pab is the sum of the graphs shown in Fig. 3.5. The double line repre- 

sen,ts~ eikonal propagators of the form5 

n’ 
-n.R+iE 

; n-= -1, n+= 1, CT = 0. (3.6) 



P is the s,um of ~11 two loop correctipn: to the hadron diztribution of ref. 5, 
ab 

where the gluons- connect the spectator wi%A the eikonal limes. Eq. (3.5) 

therefore ts an example of "weak" factorizatian, and by eq. (3.3) it has no 

double logs. It is the factorizat?on of the exchange gluons Ry from the Su- 

dakov glum k' whi‘ch leads to the form (3.5), in which the Sudakov logs are 

cancelled. 

Now we turn to our method of calculation. First we note that the factori- 

zation of eq, (3.5) is easy to derive from the set of graphs in Figs. 3.3 and 

3.4 when both fig and Ry are collinear to p'. This is because collinear exchange 

gluons carry longitudinal polarization from the bottom of the graph to the top, 

AL, their propagators are of the form 

g; 911 + 
-.--L 2 --!I!-- F$” (3.7) -. . 

2 .t2 i 
2n..ti $,2 

1 

The approximate equality holds in the collinear region, where 

nail 
i 

2 1 - 
zR' (3.8) 

In this case, factorization Is just a question of decoupling a set of longitudi- 

nally polarized gluons which are inserted into a graph in all possible ways. 

In an abelian theory, this decoupling is particularly simple, but it occurs as 

well in the non-abelian case. Here the result is precisely Fig, 3.5 in the col- 

linear region. 

This kind of reasoning, of course, cannot be applied when either of the !Zi- 

vanishes, as in the Glauber region, In this case (3.8), and therefore (3.7), no 

longer holds, so that the L; are not logitudinally polarized. To deal with the 

Glauber region, we use the approach of ref. 5. The definition eq. (3.6) of the 

eikonal line fixes poles in lli - in the upper half plane (UHP) when 9,: is defined 
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to flow out of the eikonal line. Thus, if the Ei- integration contour is no: 

trapped at ii- = 0 by a nearby pole in the lower half plane (LHP); it may be 

deformed into a region where 

+ 
a, ” 8, , q-: Im Li- < 0 . (3.9) 

We denote thisas the%mplex collinear" region. We shall show below that, after 

summing over cuts of graphs of the same topology, each ki- integration contour 

may be deformed out of every leading Glauber region, into a complex collinear 

region like (3.91, always with IDLE,' < 0, This is true on a graph-by-graph 

5 
basis for virtual exchange gluons of the graphs of Fig. 3.3 . To extend these 

results to Fig. 3.4, however, requires a sum over cuts. In each com- 

plex collinear region, eqs, (3.7) and (3.8) hold, and Ward identities may once 

again be applied to derive eq. (3.5). The understanding that poles near ii- = 0 

are avoided by deformations into the LHP is summarized in the definition of 

I-P and the sign of the ic in eq. (3.6). 

The aPPlicatio* of the Ward identities is quite straightforward Once the 

f-i integrals ==e of the desired form (Q, complex collinear). In the following, 

wa outline a mathod for combining diagrams to produce expressions in which all 

l==di*g co*t=ibutio=s cm= from regions where the exchange gluuns are complex 

collinear. 

We close this section by pointing out that certain graphs, like Fig. 3.6, 

which have no double log from the Glauber region,are neverth=less necessary for 

factorization in the Feynman gauge. This is because they do have double logs 

when the exchange gluons are collinear. In the Feynman gauge, at least, the 

. 9~ 
Glauber region cannot be considered in isolation. 

. 
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xv: SINGLE EXCHANGES 

In this section, we give a detailed discussion of the single-exchange graphs 

4.1(a),(b). The Glauber region for single exchange is associated with an 

imagfnary part, which cancels in the cross section, The manner in which the 

terms arrange themselves , however, is independent of this cancellation. In 

fact, the same pattern occurs in the double-exchange graph+li'&e Ftg: 4:i(~c)? 

which +PcJUdes a real contri%utfon from a double Glaober region. 

As usual, k' is Sudakov and 1' is either Glauber or collinear. As mentimed 

in set; 3, in the collinear region, fig. 4.1(a) combines with fig. 4.2 to factor 

by the Ward identities. Similarly, fig, 4.1(b) should combine with fig. 4.3 

to factor.W& also *eedthe graphs in fig. 4.4 to get factorization, due to 

ghost terms in the Feynman gauge Ward identities. (It is easy to check, by exam- 

ining numerators, that these graphs have Sudakov double iogs only when 9," is 

collinear, not Glauber.) As we pointed out above, this factorization procedure 

fails in the Glauber region, where a- << Lt To deal with this problem, we 

examine the positions of poles in the .t- plane. 

Since a+ = o(l/&) and al = o(l) in the Glauber region, the pole in 2,- from 

the l/(fi2+ic) propagator is o(c) from the origin. The same is true for poles of 

the lower active and spectator quark propagators. Generally, the only poles near 

the origin in II- come from the upper active quark and the Sudakov glum propa- 

gators. If all of these poles are in one half plane, we can deform the 11- 

contour into the opposite half plane all the way to o(&),where one of the 

other poles may show up. If we look at the relevant poles in II- from the 

denominators of (p-9.)' and (p-k-f.)' in fig. 4,2(a), for example, they both lie 

in the UHP. So does the relevant !&- pole from (p-k-a)' in fig. 4.2(b). Hence, 

in these graphs the a- contour may be deformed into the LHF', all the way to 

o(L) in the complex collinear region. 

- . 
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In Fig. 4.1(a), however, the R- pole from the denominator of the line (k+E)' lies 

2 + in the lower half plane at a distance o(kl/k ) from the origin. As a result, 

if we want to deform the .t- contour into the lower half plane, so as to make it 

coincide with the a- contours in Figs. 4.2(a) and (b), we must pass through 

the pole from the denominator (k+E)! We then have to include an extra contri- 

bution from the residue at this pole. A similar 

problem occurs when we try to combine the contribution from Fig. 4.1(b), with 

thecontribution from the graph of Fig. 4.3(a), since the 9.- pole from the denom- 

inator of the line (p+i)' in Fig. 4.3(a) liesin the upper half plane, while the 

P.- pole from the denominator of (k-k)' in Fig. 4.1(b) lies in the lower half 

plane. we shall show that when we add all the graphs, these extra contributions 

cancel and we are left with contributions that can be f=cto==d by the use of 

Ward identities. 

We use a diagrammatt,c method for doing our calculation. First we do the R 0 

integral by closing its contour in one half-planeor the other and picking up var- 

ious poles coming from the Feynman denominators. Leading contributions will be 

associated wftb poles in denominators left in the resulting expression. It is 

*ow important to note that, after we close on the 9. contour, the effective ic 
0 

prescription for some other Feynman denominators may change. To see how this may 

happen, let us consider a simple double integral 

dx dy 1 
x-iEl+y/2 x+y+ic2 x-a+is 9 (4.1) 

3 

and suppose we choose to close the x integration contour on the lower half plane. 

The two poles that lie in the lower half plane are 

x = a-is 
3' -y-h2 * (4.2) 
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Then (4.1) may be written as 

-(27ri) dy 
a+!J+ik2-E3) 

+ 
I 

1 
-y/27ic1-ia 

2 
-y-a+i(E3-E2) 1 

(4.3) 

Ifwetake E 
-1 

3 
> c2, then the effective ic prescription for the (x+y+ic,) 

denominator changes sign in the first term of (4.3). The is prescription for 

the term x-iEl+y/2 does not change sign. The final result, however, does not 

depend on whether e2 is greater than or smaller than E 3' 
when we add the two 

terms in (4.3). This is a general feature. We can assume any relative orders 

of magnitude of the is's in the Feynman denominators in our calculation, instead 

of taking them to be equal, provided we consistently follow the same convention 

within each graph. This is best seen by going to the Feynman parameter represen- 

tation of the integral, where the integrand looks like 

(4.4) 1 -l. 

Thus, so long as the ci's are positive, iEl%Ei is positive, and we get the 

same final answer, independent of the relative magnitudes of the 'i 
's that 

we choose. 

Let us now examine a Feynman integral, 

I dk' . 
~(k0)2-~2-~2+i~1~~po-k0)2-~~-~~2-~2~+i~~~ 

(4.5) 

We assume that cl >> Ed, and close the k" contour in the lower half plane. We 

consider the contribution from the pole at k" = J&?-iEL. The contribution 
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from the other denominators may be written as 

1 1 
(k"+~~~~o-ko-J~~-~)2+~~E2) (PO-k' 

(4.6) 

The result of closing the k" contour on the pole at kO = &*+pzLizl may then 

be written as 

(-21ri)6(k2-p2)8(ko){ko+Jk2+~2 - icll 
-1 

X {p'+' _ -' (4.7) 

The correctness of (4.7) may be verified by replacing k" by % ti P - icl in 

(4.6) and using the fact that c 1 
>> E . 

2 

We generalize this procedure by strongly ordering e the E'S: 

“a >> E >> E *-*, b c 

0 and linearizing denominators in the ai, as in Eq. (4.6). Then the following 

rule allows us to keep track of the 1~'s at each stage in the integrations. 

If Ei >> ~~ for i> j, and ni= +l, 

1 m 

-I 
dRo e[ IIo-ai+isi’lil 

-1 
2Vi i=l 

m 

= ,~I$ [ai-aj+i"j~j~-lk~~taicak - i ciQi 
I-l, 
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That is, when pole i is taken, E. 
I 

(including sign) simply replaces all sk with 

k < i on all other lines which carry ilo. Lines with sj > si retain their is 

prescription unchanged. In this way we avoid s-functions involving differences 

of the E'S, all of which must cancel in the final result. 

When we represent the result of an energy integral in terms of diagrams, 

we shall put a slash (/) on a line whose is prescription has changed sign. If 

it changes sign in only one of the two terms into which a Feynman denominator 

breaks up (as in the example above) we shall put an arrow, together with the slash, 

in the direction of the energy flow on the term whose is prescription changes sign. 

We shall make the following approximation in our calculation. We are 

interested in the region of integration where the Sudakov gluon k' and the quark 

lines q',(p'-q)', p' carry large energy from the left to the right in the diagrams. 

Other regions of integration cannot contribute to the LLA because of the trans- 

verse momentum cutoff at the "wave function". Hence, when we close the 9. o con- 

tour, we shall ignore poles which require the energy of these lines to flow in 

the opposite direction. We then express the 9, o integral as a sum of several 

diagrams, in each of which an allowed pole has been taken. In these diagrams, 

the Sudakov gluon line connecting the exchange gluon and the fermion line gene- 

rally does not have the correct is prescription to allow the exchange gluons to 

factor. To deal with this problem, we express its denominator as a sum of two 

terms. One term has the ic prescription reversed, and the other is a 6 function, 

using 

(x - IE) 
-1 = (x + is) 

-1 
+ ZriS(x). (4.8) 

Using all the prescriptions mentioned so far, the contribution from Fig. 

4.1(a) may be evaluated as in Fig. 4.6. The precise Feynman rules for the various 
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special propagators are shown in Fig. 4.5. They are valid when the line lies 

to the left of the cut. When the line lies to the right of the cut we must 

complex conjugate the expression given in Fig. 4.5. Also, a circled propagator, 

as in Fig. 4.6, tells US that the line cannot be on-shell. The numbering of 

the different lines in Fig. 4.6(a) is according to the order of increasing E, 

i.e. we have ~5 >> c4 .> ~3 >> c2 >> E . 
1 

Of the diagrams in Fig. 4.6, the contribution from Fig. 4.6(c) does not 

have the problem of having wrong is sign for line 4 (where by wrong we mean 

opposite to what we need for factorization). This is because in Fig. 4.6(c) 

this line is kinematically prevented from being on-shell and hence combines 

with other similar graphs, shown in Fig. 4.,7? to factor. 

The contribution from Fig, 4.6(d) is suppressed. This can be .seen in the 

following way. After we substitute the 6 function for the Feynmn propagator 

for line 5, we may eq~ress the integral in terms of I.? variables (see Fig. 4.1) 

instead of R" and L3 variables. The,6 function then constrains 9,- to be equal to 

- 'Q -,&-A$ ' / (p+ - k+, -g/k+ + p;. which is independent of fi+, so 

long as [Rfj << ip+i. The contribution from line 4 is also independent of L+ 

if lk+l >> ILe+l. The E+ pole from the denominators of the lines 1, 2 and 3, 

all lie on the same side of the real axis, Thus the .L+ contour may be deformed 

away from the origin up to a distance of order k? The contribution to the 

graph from this region is notaleading log. A detailed calculation is given in 

the appendix. 

We are then left with the contribution from Fig. 4.6(b). This has the 

wrong in sign for the line 4, so we reduce the Feynman propagator for 

line 4 using the identity eq. (4.8). Fig. 4,6(b) may then be expressed as the 

sum of the graphs shown in Fig. 4.8. Fig. 4.8(a) has the correct iE prescrip- 

tion and combines with other graphs (similar to the ones shown in Fig. 4.7, 
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except that the bottom quark line is on-shell, rather than the gluon line 

carrying momentum a) and factor. We are then left with the contribution from 

Fig. 4.8(b) as the only term from Fig, 4.1(a) with a non complex-collinear 

leading part. 

We can now turn to the graph of Fig. 4.1(b) and do the 9. 
0 integral to 

express it as a sum of the graphs shown in Fig. 4.9. Fig. 4.9(b) may be factor- 

ized by combining it with other graphs, since the right part of the Sudakov gluon 

line is prevented from being on-shell, so that the sign of the ic in the denom- 

inator is irrelevant. Fig. 4.9(a) may be expressed as a sum of the graphs shown 

in Fig. 4.10. Of these, Fig. 4.10(b) has the correct iz prescription for the 

Sudakov gluon to combine with the other graphs and factor. Fig. 4.10(a) is iden- 

ticalto Fig. 4.8(b), except for a minus sign, and they cancel. This minus sign 

comes from the changes in sign of the propagator of the exchange gluon line and 

of the vertices at which it attaches to the Sudakov gluon and to the spectator 

quark line. Since the exchange gluon is prevented from being on-shell by kine- 

matics, the relative sign of ie in the exchange gluon denominators in Figs. 4.10 

(a),(b) does not affect the cancellation. This eliminates all terms from Figs. 

4.1(a),(b) with non complex-collinear leading parts, 

This type of cancellation, which is crucial for factorization, seems to be 

quite general. In the next section, we show that this cancellation occurs when 

we sum over all graphs with one Sudakov gluon and two exchange gluons. 
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V. DOUBLE EXCHANGES 

In this section we shall take into account the effects of two loop COP 

rections to the basic graphs shown in Fig. 2.1. The relevant graphs may be 

divided into three classes: (1) Both the exchange gluons attached to the active 

quark (2) One of the exchange gluons attached to the active quark, the other one 

attached to the Sudakov gJ.um and (:3) both then exchange gluons attached 

to the Slldakov glum. Of these, In the graphs of class 1, the glum 

momenta may always be deformed to the complex collinear region. 
5 Graphs of 

type 2 my be analyzed in the same way as we analyzed the one loop graphs in 

Sec. 4. Hence in this section we shall concentrate on the graphs of type 3? 

examples of which are shown in Fig. 5.1, 

To keep our dis~cussion brief, we shall consider only the diagrams shown in 

Fig. 5.2, and will show how we can bring them into a form where the momenta can 

readily be deformed into the complex collinear region, and factorization may 

be achieved. 

As in Sec. 4 we number the lines in the order of increasing ic, 

cl cc E 2 << E 3 << E 4 << E 5' 
We first integrate cover the ky and the -P.I momenta, 

using this ordering of the E'S. We then analyze each term obtained by the in- 

tegration, and bring it into a form where the the momentum contours may be deformed 

into the complex collinear region. In doing this, we have to change the iz 

prescription of some of the lines in the same way we did in Sec. 4. The fol- 

lowing relations are useful, along with eq. (4.8), 

i i i i i _^__ 
x+ic y+iE = 5 y-ic + x-i= - 2n6(y) + 27r6(x) & , (5.1) 

(-i) i (4 -A- + Zms(y) &---=--7- y+iE x+tlc y-k 
2 + ZlTci(x) --$- . 

y-P2 (5.2) 
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We start with Fig. 5.2(A), which we call diagram A. After we do the 8; 

integral, we get terms Al, A2, A3 and A4 shown in Fig. 5.3. In each of these, 

we do the !?, 7 integral, and get the terms Ala, Alb, 1.. A4a,als" show* in Fig.5.3. 

Of these, + the terms A2b and A3b are not leading logarithm, since the !x,~ contour 

is not pinched and hence may be deformed away to 0(/k+). Similarly, A4a is 

suppressed, since the .Ll contour may be deformed to o(@). In addition, 

A3a does not contribute to leading log, because the arrangement of poles in 

this case prevents the Ry from being either Glauber or collinear to the bottom 

spectator. 

Ignoring these terms, we use eqs. (4.8), (5.1) and (5.2) to generate a 

set of terms with the correct ic signs on the Sudakov lines to give factoriza- 

tion. These are shown in Fig. 5.4, while the remaining, non-factoring terms 

are shown in Fig. 5.5. Of these terms, (1) and (2) come from Ala in Fig. 5.3, 

terms (3) and (4) come from Alb, term (5) cc~mes from Ale, and terms (6) and (~7) 

come from A2a. 

We may repeat the same analysis for Figs. 5.2@) and (c). Their left-over 

terms, analogous to Fig. 5.5 are shown in Figs. 5.6 and 5.7, respectively. 

We now note the following cancellations, which eliminate most of the left- 

over terms in Figs. 5.5, 5.6 and 5.7. 

(2) + (12) = 0 (7) + (11) = 0 

(3) + (14) = 0 (8) + (13) = 0 

(4) + (9) = 0 (10) + (17) = 0 

(5) + (16) = 0 

In writing down the above equation, we have used the fact that the vertices 

and the Feynman propagator acquire a relative minus sign when they cross the 

cut, as does the iE in the Feynman denominator. For example, the slash on the 
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right exchange glum in (12) is important. Since this glum is to the left 

of the cut in (2) and to the right of the cut in (12), the net effect is that 

the izx prescription is the same in (2) and (12) for the pole where the energy 

of this glum flows up. There is a relative minus sign in the it's in the 

pole where the energy flows down, but in this region the line is kinematically 

prevented from being on-shell. 

Thus, we are left with the terms (l), (6), (15) and (18). Each of these 

terms has an intermediate state with three on-shell lines, These terms cancel 

with terms coming from cut diagrams with three real lines (e.g. the one shown 

in Fig. 5,8), when we go through the same analysis for them. Through our 

sample calculation, we have shown how to bring the graphs into a form suitable 

for factorization. All other terms are treated in an exactly similar way. 
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VI. DISCUSSION 

We have shown by direct calculation that, to lowest +elevant order and lead- 

ing logarithm, Glauber exchanges are consistent with weak factorization even in 

the presence of a Sudakov gluon. We believe the pattern of the calculation 

is sufficiently organized to conjecture that this result is quite general. 

The mechanism of factorization may be summarized as follows. Momentum 

space contours for exchange gluons are deformed from the Glauber into the com- 

plex collinear region, leaving behind various pole contributions, all of which 

are due to the presence of the Sudakov gluon. Then: 

(1) The left-over poles cancel in the sum over graphs with the same 

topology but different cuts, and 

(2) The complex collinear gluons factor by the use of Ward identities. 

Aside from the simplicity of this pattern at lowest order, one may also 

argue more generally, if heuristically, based on the work of Ellis, De Tar, and 

Landshoff, and Cardy and Winbow. 10 In our calculation, a Sudakov gluon acts like 

a spectator; it is relatively energetic over its whole energy range, and nearly 

parallel to the top incoming hadron. On the other hand, a Glauber region gluon 

may be compared to a pomeron; it carries spacelike momentum and thus cannot go 

on-shell. The case of Pomero*s interacting with spectators has been treated by 

Ellis et a1.l' They use a rather different language than we do, but their argu- 

ment still comes down to the analytic properties of Feynman integrals. They con- 

clude that after a sum over cuts of graphs of the same topology, it is always 

possible to deform from a region where small momentum flows through a pomeron 

into a region where large, (nearly lightlike) momentum flows through it. This 

result that contour deformation is possible is theory-independent. It is true in 

renormalizable as well as super-renormalizable theories, and in non-abelian as 

well as abelian gauge theories. 
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The ability to deform contours after summing over cuts implies the can- 

cellation of left-over poles mentioned in (1) above. Ellis et al. do not sum 

over cuts of different topology as we do to get (2), because complex collinear 

contributions are suppressed by power counting in the super-renomalizable case 

which they assume. 

We have carried out our analysis using covariant perturbation theory. 

One might wonder what happens in time-ordered perturbation theory. In parti- 

cular, we expect final state interactions to cancel in time ordered perturbation 

theory, leaving over various initial state interactions which are naturally 

associated with Glauber exchanges before the hard interaction. 
2 Our calcula- 

tion implies simply that initial state as well as final state interactions can 

combine in a non-trivial way across the cuts. This does not contradict the 

possibility of independent initial state factorization on each side of the cut,2 

but suggests that identities exist which allow alternative organization of the 

relevant terms. 

We can give a suggestive example of this mechanism by studying Figs. 4.F) 

and(b) In Fig. 4.l@ when 9,' is a Glauber glum it may be in either the initial 

or final state. In Fig. 4.l@ however, 9," gives only a final state interaction 

when kl-I is Sudakov. This is because any state involving the line (q-k)'is off- 

shell in that region. One finds then that the final state contributions cancel, 

leaving the initial state contribution from Fig. 4.44 This term is exactly 

the imaginary part of the deformable, complex collinear, term Fig. 4.X@, which 

combines with Fig. 4.3 to factor. In a sense, then, it is precisely !X%& initial 

state term from Fig. 4.@which combines with Fig. 4.3 to give the fully factored 

result. 
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APPENDIX 

In this appendix we shall show that the contribution from Fig.4,6(d) is 

suppressed. To do this, let us label the momenta in the graph as in Fig.A.L 

Then the contribution from the line carrying momentum p-k-g is given by 

277 &[(p-k-Q2-m2] = 2v(p+-k+)-16(p- 

P+ - k+ 

(A.1) 

in the region I!LL+I << lk+l, Ip+I. The denominator of the line (k+ll)Uis in- 

dependent of .L+ in the region. Thus the only fie+ dependent denominators come 

from the lines carrying momentum .$(p'-q-J$and (q+&)'. Taking into account the 

change in sign of the ic in the denominators of the lines $aand(p'-q-R)ywe may 

write the total contribution from these denominators as 

(&+P,- - ati - p2 + ic.L-)-l {(p'--q--L-)(p'+-q+-a+) - (~'-2 -;),*-m* 

- ie(p'--q--P,-)} -' {(q++e+j(q--km) - (;L+12)2-m2 + ic>-l. (A. 2) 

Thus the pole in the fi+ plane always lies in the lower half plane 

and we my close the 9. + 
contour in the upper half plane. The numerator is 

effectively ?-independent, and the powers of k + in the denominator 

would be sufficient to make the integral vanish if the deformation 

were extended to infinity. The approximation we have made, however, is 

valid only in the region IR+I << /p+I, lk+l. Thus we cannot really 

close the contour at infinity, but can at least deform the L 
+ 

contour 

away from the origin to a distance o(k+). In this region, the contri- 

bution from the graph of Fig. A.1 is no longer leading logarithm, as 

may easily be seen by a direct examination of the integrals. 
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FIGURE CAPTIONS 

Fig. 2.1 Lowest order graph with Sudakov double logarithms. 

Fig. 2.2 Examples of graphs found by adding exchange gluons to Fig. 2.1. 

Fig. 3.1 

Fig. 3.2 

Fig. 3.3 

Fig. 3.4 

Fig. 3.5 

Fig. 3.6 

.Fig. 4.1 . 

Fig. 4.2 

Fig. 4.3 

Fig. 4.4 

Fig. 4.5 

Fig. 4.6 

Fig. 4.7 

Fig. 4.8 

Fig. 4.9 

Fig. 4.10 

Fig. 5.1 

Fig. 5.2 

Fig. 5.3 

Fig. 5.4 

Fig. 5.5 

Color decomposition of quark-antiquark scattering. 

Definition of S. - 

Graphs included in i"l. 

Graphs included in r2. 

Definition of Pab in eq. (3.5). 

Graph with double log but no Glauber region in the Feynman gauge. 

Single exchange graphs and a related double exchange graph. 

.Single exchange graphs related by Ward identity to Fig. 4.1(a). 

Graphsrelated by Ward identity to Fig. 4.1(b). 

Graphs required for factorization in the Feynman gauge. 

Definition of graphical notation. 

Result of energy integral on Fig. 4.1(a) with indicated choice 

of El?.. 

Set of factoring graphs. 

use of eq. (4.8) on Fig. 4.6(b). 

Result of energy integral on Fig. 4.1(b). 

Use of eq. (4.8) on Fig. 4.9(a). 

Graphs of type 3. 

Cuts of Fig. 5.1(a) discussed in text. 

Result of energy integrals on diagram A. 

Diagrams in which &- contours can be deformed into the LHP. 

Diagrams left over after isolating Fig. 5.4 from Fig. 5.3 by 

using eqs. (4.8),(5.1) and (5.2). 
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Fig. 5.6 Diagrams left over from Fig. 5.2(B). 

Fig. 5.7 Diagrams left over from Fig. 5.2(C). 

Fig. 5.8 Graph with cut exchange glum. 

Fig. A.1 Suppressed diagram discussed in text. 
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